g
T Sechpem

targets and scoring systems Jan 2019 V1.05

Codesign Embedded System

Ce document est la propriété de Secapem. Il ne peut étre utilisé, reproduit ou divulgué, méme
partiellement, sans son autorisation écrite préalable.

This document is the property of Secapem. It may not be disclosed, used or reproduced, in whole or in
part, without the prior written consent of Secapem.

1
(}QZ\ CodESys
T Secapem Page 2122

targets and scoring systems

1. TABLE OF CONTENTS

2. SOFTWARE/HARDWARE CODESIGNcooiiiiiiiiiiiiiee et 3
3. OVERVIEW ..ttt ettt e e e et e e e e bt e e e e am e ee e e ateeaeeannneeaas 6
4. CODESYS HARDWARE ARCHITECTURE ..ottt 6
41 COUESYS PrOCESSONcuseussissessssessessssesssssssessssssesss s sss bbb AR R AR R 8
4.2 ClOCK SYSEEM: ... e sr e a e a e nE e R R e s 8
4.3 RESEt SYSEM ... e s s e e 8
L € I8 {0 I 1o [- | 9
A5 UART BUS :.oovuieiessssssssssssssssssssssssss st s s b s b 9
4.6 SIAVE BUS ...t 9
4.6.1 SLAVE WITE ACCESS ...ovvueeiiaeie ettt bbbt 9
4.6.2 SLAVE REAU ACCESSouvveiriiiieiiiititiee ittt 10

4.7 MASEEE BUS....oitisrissisriss s bbb 10
471 MaSEr WHHE CYCIE ..ot 11
472 MaSter REAA CYCIE ..ottt 12
4.7.3 MASTER READ/WRITE CYCIEScuvuirrriereiieireiieieieieteeeiseis s 13

R T o U 1P 13
4.9 COAESYS INEEITUPLoocerecnicrcse s bbb 14
5. CODESYS SOFTWARE APl ...ttt e e e ae e e e ns 15
5.1 SLAVE APooeecensensessisessessessessessesssssssssssesss s s e e eEe R 15
5.1.1 SLAVE WHite MENOU. ...t 15
5.1.2 SLAVE Read MEthOQ...........cviiiiiiiicisii et 15

5.2 MASTER DMA APLL.....ooeeiececeersessesssssssessssssssss s s sss s s e ss s s st 15
6. CODESYS PLATFORM: ARKEONcoiiiiiiiiiiaiiiiiee ettt 18

7. CODESYS: SOFTWARE DEVELOPMENT TOOLooitiiiiiiiiiiiiieeee e 22

/—l_\'

m CodESys

(&Seca em Page : 322

targets and scoring systems

CodESys

Codesign Embedded System

2. SOFTWARE/HARDWARE CODESIGN

Software systems based on Turing/Von Neumann machines such as processor or
microcontrollers. They are based on a CPU (Central Processing Unit) which executes
sequentially a simple instruction. Their main benefits are to be easy to program, to
provide a high flexibility of reprograming and to be able to execute any complex
operation. The first disadvantage of these systems is to execute only one task at
time. The second disadvantage is to segment an operation into a set of simple

Codesign system conception

J\ heavy problems :
V=4
\T\ N Hardware Benefits :
Software Benefits : ‘ Hardware duplication -
. . . Hard Real Time
Sequential programming R Drivers
4

(Turing Machine) True Parallelism
Tests complexity

Easy debugging High bandwidth for data stream

Hardware complexity processing

Numerous parameter management
Hardware-software

Easy to reconfigure/update communication

Ramammaia

instructions which slows down the execution of the operation. Also, if the system

/_l_\'

-m CodESys
T Secapem Page 4122

targets and scoring systems

uses an operating system, it is difficult to predict how much time the operation will
take (furthermore if the system has several levels of memory cache).

In hardware systems the operation to execute is directly wired in hardware
component such as an ASIC or a FPGA. The operation is executed very quickly
because it is directly implemented with electronic component. Also, if the operator is
wired several times in the component, several operations can be executed at same
time. Because the implementation doesn’t depend on instruction set or operating
system it is much easier to predict the execution time of an operation. But describing
hardware architecture in VHDL or Verilog description language is a little bit more
complicated than using a programming language for software systems. The signal
propagation time, the clock synchronisation, the critical path (etc...) require some
experience. Also, when hardware component is configured to execute an operation it
is harder to reconfigure it than reprogramming a software system. Without entering
into details, the debug process of a hardware system requires also some equipment
(scopes, logic analyser, etc.) and experience.

These two kinds of systems have complementary benefits and disadvantages. That’s
why the idea to design systems which merge soft and hard operators has been born
(developed). This kind of mixed design is called « hardware-software codesign »:
software to keep advantage of programming languages (flexibility, reprogramming,
etc..) and hardware to take benefit from high speed execution and time predictability.

The conception of a codesign system is complex and brings a lot of problems which
often eliminate this kind of solution. The most important problems are : the
communication between the software and the hardware parts, the tests

A simple example could be a digital signal processing algorithm which often needs
the convolution operator. This operator is very time consuming for a processor. In a
codesign system you can create your
convolution operator in hardware and
the rest of the algorithm in software.
First, the both parts could work in
parallel and second the execution of
. the convolution will be much faster
L) L) than if it was programmed in
software.

Classic Monoprocessor

pc codesign system

7

Application) | [

Hardware

cPU Unit

uonn|oAu0D
uoneslddy
uonnN|oAu0D

Another example: you want to execute a specific task when some analog input
signals sampled at 1MHz reach a specified combination (for example: signal S1=1V
§2=2.3V, s3<4V, etc...). In this case the microcontroller can only execute this task
(get signals and compare with the specified combination) without doing anything
else. In a codesign system, a specific hardware unit can be designed to get signals

g

’-/ CodESys

'S m
eca.pe Page : 5/22

targets and scoring systems
B . RS and compare with a specified
plicaton) | combination and interrupt the processor
e || z - when the combination is reached. In this

' Z | |Hardware Compare .

i s |1]| g [| unt coma|| case the processor is freed from the

« watching » task and is able to work on

Some systems made with CodESys:

the application.

CodESys

-Dynamic Acoustic extractor
configuration

Acousti
sensor

-result encapsulation and
transmission
- data recorder

Video processing and overlaying
application

Neural processor :

Interface

Secapem embedded scoring
system

-Dynamic video processing
configuration

-add video processing result
to screen interface

- manage Man Machine

‘ Video
merger

0 |C66ESys \
-Neural network configuration
FLASH i

1
m?\ CodESys
T Secapem Page : 6122

targets and scoring systems

3. OVERVIEW

We have created CoDESys in order to simplify the design of hardware/software
codesign embedded systems. To reduce size and complexity of electronic system all
units (hardware and software) are gathered in a single FPGA. CoDESys provides:

- aprogramming language (Java)

- aprogramming environment (Eclipse)

- a processor (software system)

- ashared access to the IEEE-754 FPU

- ashared access to the SDRAM (MASTER bus)

- aprocessor access to the hardware units (SLAVE bus)
- An API to communicate with hardware unit(s).

[SDRAM Shared Memory CotEsys Harware

Interface
/ FPGA User defined Hardware

SDRAM Controler — U .
nits

Master Bus

CodESys IP

Cod'E;'S'ys ‘derI_meent
Environment

— —

The SLAVE BUS is used to configure the hardware unit registers. In this case the
hardware unit acts as a slave and only respond to the processor requests.

In order to be totally autonomous and able to work in parallel with the processor,
hardware units have a direct access to memory (DMA: Direct Memory Access). They
can work on big amount of data without interrupting the processor which have its own
memory caches. In this case the hardware unit acts as a master and is able to
request some reads or writes to the SDRAM memory. This bus is called the MASTER
BUS.

4. CODESYS HARDWARE ARCHITECTURE

I’

V'
(% CodESys

(SS

ecapem

Page : 7/22
targets and scorlng systems
SDRAM 16 bits SDRAM 16 bits
32MB 32MB
IS42RM16320E-6BLI | IS42RM16320E-6BLI
To! TriState Transformation 7
LattlgeXPz -17 [Z$]
LaicexP2-30 & @
CodESys | e
Hardware IP SUHLIED el DMA -
.o BRI e o
[SDRAM controler] i " Master g5
2~ Qe I S Unit mS
P oes b 3D O e e
MasterDMA { T e 1 } 33
[ICache] [DCacne] I N £l> ag
e T HER i s
8 3 iR Y 4]
- Rey JAP BEE E N 2c
%3 B T] wusl, B2
L T Lna0 &
Watenaog) 24P G: By 0 AR
SCThedU'e Main UART (0) 3 & Unit =2
mer Boot Wake&(G:‘ s
Loader P L
UART Bus System ’
w Clock 2
z ResetCom :
Reset | ikaeale L\ T
ResetFlash| Manager Resetout N y
& & \ } dock_i% &

The CodESys IP includes :

A SDRAM controller: allow the processor and the DMA master unit to
load/store from/into SDRAM memory

A SPI Flash controller to communicate with the non-volatile Flash memory

A reset manager (explained further)

A Schedule Timer used by the Java Virtual Machine to schedule Java Threads
An UART: used to update software/firmware or download/upload data

A clock manager (explained further)

A bootloader: the CodESys can boot on UART or on Flash memory. It boots
on UART when the application or firmware must be updated (update mode). It
boots on Flash to run the application (normal use mode).

Memory cache: fast internal memory cache to speed up the execution
watchdog: hardware device which resets de CodESys when application is
stuck somewhere.

JAP: Java Virtual Machine including software part and hardware acceleration.
It includes an IEEE 754 floating Point Unit.

Master DMA Bus : bus used to connect a master hardware unit to the SDRAM
(explained further)

Slave DMA Bus: bus used to connect a master/slave hardware unit

FPU bus: bus used to access the IEEE 754 floating point unit. In this case the
FPU is shared with the processor.

1
ﬂ?{\ CodESys
T Secapem Page ;812

targets and scoring systems

- Sleep_clock : This clock still works even if the CodESys IP is in sleep mode. It
must be used by hardware unit which are not sleeping in sleep mode (usually
the hardware unit which are able to wake up the system with WAKE signal).

- System_clock : this clock must be used to communicate with SLAVE and
MASTER buses.

- Wake signal : this signal is used to wake up the system.

- Int_ext: this signal is used to send an interrupt to CodESys.

41 CodESys processor

The CodEsys processor has two instruction sets: Java and Risc. This processor has been
designed with in collaboration with the CEA-DAM. It is working in military/industrial
applications for twenty years. The Java has been chosen for its sustainability, security and
“all inclusive” implementation. Java includes all mechanisms of an operating system, such as
memory allocation/free, threads, thread synchronisation, object oriented, etc.

4.2 Clock system:

Clock is generated from an external quartz of 40MHz. This external clock must be
connected to clock_in signal of CodESys. This clock is synchronized into PLLs and
provided as clock_out signal. The frequency of clock_out signal is 40MHz. The
clock_out signal must be used with all provided buses (master, slave and FPU).

All signals are synchronized on the rising_edge of clock_out.

A sleep_clock is also provided by CodESys IP. The CodESys IP can be set (by
software) in sleep mode. When the CodESys IP is in sleep mode, the clock out
signal is no longer generated in order to freeze all hardware units which doesn’t need
to work when sleeping. But some units can be used as wake system and need a
clock signal. These units must use sleep_clock because the sleep_clock still works
even if CodESys is in sleep mode. The frequency of sleep_clock is 40MHz.

4.3 Reset system:
CodESys has two external input reset signal : reset_fla and reset_com.

Reset_fla resets CodESys and sets it in Flash boot mode (normal use). So reset_fla
signal is the “normal” reset.

Reset_com resets CodEsys and sets it in COM(UART) boot mode (update).
Reset_com must be used when an application or firmware update is needed.

Reset_out is generated either when reset_fla or reset_com occurs but it takes also
into account the synchronisation of the PLLs with the external clock (clock_in).
reset _out must be used to reset all hardware units.

All reset signals are active low.

/—l_\'

m CodESys
@Secapem Page : 9/22

targets and scoring systems

4.4 GLED signal:

This signal is used to see if the system is working correctly. In application mode
(normal use) this signal toggle approximatively every second.

When updating the system, the led toggles when a data is received.
When this signal stays unchanged, it means the system is stuck somewhere.

4.5 UARTBus:

The CodESys uses the UART bus for two main goals. First in update mode, it is used
to update application and firmware.
Second in running mode (application) it
can be used to communicate with an
UART device (PC, module, etc).

External device

It is a standard TTL UART. The default ® v
Settln gS are: uart_tx_0 uart_rx_0 uart_rts_0 uart_cts_0

CodESys hardware IP

115200 bauds, 1 stop bit, no parity

4.6 Slave Bus

1

1

1

1

:

1
A 4 A 4
clock_out slave_rw slave_DataOut int_ext SleepCK

32 bits
#reset_out slave_CS sIav;gA;tdress v, Bl wake
its

32 bits

CodESys hardware IP

SLAVE bus is used by the processor to read or write data into hardware units.

4.6.1 SLAVE Write Access

When the processor wants to]
Write Slave Cycle

write a data into a specific oo [L[L [L [L[L[L[

register, it resets the

#reset_out : : : : : : :
slave_RW signal, sets the s, | I—'W f——"l_
slave_cs, sets the . ; g ; g g g | g
slave_addresé(xxx)(Ad_A X XX X Ad_B X Ad_C X O)
slave_Dalalng < XX >
sIave_DalaOufl(a<xx)(Dat_A X XXX X Dat_B X Dat_C X XXX)

Write Dat_A : Writ¢ Dat_B Writg Dat_C
at aqdress : at aqaress atdddress

/—l_\'

-’/M CodESys
| (Secapem Page : 10122

targets and scoring systems

slave_address bus and sets the slave DataOut bus. The slave_cs signal means the
processor wants select a hardware unit register. The slave_rw low means a write
cycle. The slave_address bus specifies the address of the requested register. The
slave DataOut bus specifies the value of the data the processor wants to write in the
register. The slave unit must update the specified register at the rising edge of the
clock_out signal.

4.6.2 SLAVE Read Access

Rz Slave Eiido When the processor wants

clock_out (N e Y Y s Y Y s O to read a data from a
reset out_|] : ; ; ; ; - specific register, it sets the
caecs | l—"l |——"|__ slave_cs , sets the slave_rw
e é ,__l I__Ll_ﬁ signal and sets the
] ? ~ slave_address bus. The
slave_address XXX Ad_A XXX Ad_B Ad_C XXX .
§< : X X X X X ;) slave_cs signal means the
sIave_DataInE (XXX X Dat_A:X XX X Dal_B X Dat_t c X XXX) processor Wants tO Select a
e SHENNE § . ‘ i Y hardware unit register. The
: Read Dat_A : ReadDat_B Reafi Dat_C

oy al Aaddess ot atress slave_rw low means a write

cycle. The slave_address

bus specifies the address of the requested register. Before the next rising edge of

clock_out the selected hardware unit must set the slave _Dataln bus with the value of

the selected register. The data is transferred to the processor on the rising edge of
clock_out signal.

4.7 Master Bus

The master bus is used by hardware units to read and write into memory. This bus is
also called a DMA (Direct Memory Access) bus. This kind of bus makes the hardware
units totally autonomous and they can work on a lot of data without the processor
help. Thus processor and hardware units are able to work in parallel.

Master/DMA Unit

1

1

1

1

:

1

A 4 A 4

clock_out master_req master_Address master_DataOut int_ext SleepCK
#reset_out master_rw done 23 bits master_bsd 32 bits master Dataln wake
4 bits n

32 bits
CodESys hardware IP

/_l_\'

m CodESys
(&Seca em Page : 11122

targets and scoring systems

The processor and the hardware units share the same SDRAM memory. The
hardware units have a higher priority to the processor. When the processor and the
hardware unit want to access the SDRAM at the same time, the SDRAM controller
freezes the processor and give access to the hardware unit. The processor doesn’t
take a lot of SRAM bandwidth because it has its own memory caches: One for
instruction and one for data (Harvard architecture).

471 Master Write Cycle

When a hardware unit wants to write a data into SDRAM, it sets master_req signal,
master_rw, master_address bus, master _bsd and master_Dataln. master_req sends
a request to the SDRAM controller. master rw low means a write cycle.
master_address specifies the SDRAM address to write. master_address is a 32 bits
(4 bytes) address. master_bsd specifies the byte(s) into the 4 bytes word. For
example if master_address=A and bsd(0)=1, bsd(1)=0, bsd(2)=0 and bsd(3)=0, only
the byte at SDRAM address A*4 will be written. If master_address=A and bsd(0)=1,
bsd(1)=0, bsd(2)=1 and bsd(3)=0, only the bytes at SDRAM address A*4 and
(A*4)+2 will be written. If we want to write a 4 bytes word at SDRAM address 8 we
have to set master_address=2 and bsd(0)=1, bsd(1)=1, bsd(2)=1, bsd(3)=1. If we
want to write only one byte at SDRAM address 17 we must set master_address=4
and bsd(0)=0, bsd(1)=1, bsd(2)=0 and bsd(3)=0. The data to write must be in the 32
bits master_Dataln Bus.

Write Master Cycle (DMA cycle)
— ; : : : : : ; : : : : -

master_req_| § i E E i E E E Z E |
mastore | s s e e 5 ; s 5 5 s s
masler_addregs\)(XX X /’:\d_A X XXX X Ad_B Y AdC){ AG_D XX)
master_bsd { X X blryte 0 X XXX X ny1e0.1.2,3;)| byte0.1.2,?r: [bite0,1 (XX)
master_Datadu(: ' : : : XXX)
master_Datalé <)O(X)([sat_A X XXX X Dat_B X Dat_C X dat_D X XXX)
Done [_'—| ' ! :] :

o Write Dat_B Write Dat_C Write Dat_D

Write Dat A atSDRAM atSDRAM at SDRAM

at SDRAM address address address

ai%fejs Ad_B Ad_C Ad_D
Master_address bsd SDRAM byte address
A bsd(0)=1 A*4

bsd(1)=1 (A*4)+1
bsd(2)=1 (A*4)+2
bsd(3)=1 (A*4)+3

I’
m?\ CodESys
@Seca em Page : 12122

targets and scoring systems

The data is written into memory when done is set to one. Done signal can be set to
one from 1 to n cycles.

Several write cycle can be chained. In this case one data write can be done each
clock cycle (burst mode). Warning: the done signal can be lowered during some
cycles (for example during refresh memory cycles).

47.2 Master Read Cycle

When a hardware unit wants to read a data from SDRAM, it sets master_req signal,
sets master_rw and master_address bus. No need to set master_bsd because the
master bus always read a word of 32 bits. master_req sends a request to the
SDRAM controller. master_rw high means a read cycle. master_address specifies
the SDRAM address to read. master_address is a 32 bits (4 bytes) address. The
done signal is set by CodESys to inform that request has been taken into account but
the data will be available at least 2 clock cycles after. The data is ready on
master_DataOut bus two clock cycles after the done signal. As write cycle, read
cycle can be executed in burst mode (data is always delayed by two clock cycles).

Read Master Cycle (DMA cycle)
#reset_out

A : : : ; : : : : :
master_addreés(Ad_A X xxx){ r;d_B x Ad_C [AdD ¢ XXX)
master_vsa | (1 i i i o | i i i >
master_DataCi)ut (I XXX : X Dat_A X ’xxx X Dat_B X Dat_C | DpatD 0)
master_Dataléu (iXXX : : . ‘)
Done H H H

Read Dat_f; at SDRAM Read Dat_B Read Dat_C Read bal_D

address Ad_A atSDRAM atSDRAM at SDRAM
Data will be available 2 address address address

cycles later Ad_B Ad_C Ad_D

I’
(}QZ\ CodESys
(&Seca em Page : 13122

targets and scoring systems

4.7.3 MASTER READ/WRITE cycles
Read/Write Master Cycle (DMA cycle)

clock_out
#reset_out | : i ' 1 i ' i : ;
master_req : : ' i H ' : ' Tl
master_w _| % e ! l § i i § a
master_aadre'ss(XK Ad_A X AadB Y i AdC | AadD Y AadE K | XX D
master_bsd | : p : ' : byte0,1,2, l : byte0,1 ; ! : i
t :] : : : w0123 7 N EECER : K i
master_DataO:ut< 10X X Dat A ! x Dat_B K XX X Dat_E)
master_Datalq | ' XX ') Dat_C Y Dato i XXX)
Done : : ; ' : i : : ' : :
Read Dat_A ReadDat_B write Dat_C at Write Dat_D read Dat_E
atSDRAM at SDRAM SDRAM at SDRAM at SDRAM
address address address address address
Ad_A Ad_B Ad_C Ad_D Ad_E

A read cycle can be followed by a write cycle without lowering the master_req signal.
When a write cycles follows a read cycle it is been delayed at least by two clock
cycles.

4.8 FPU bus

The processor includes an IEEE 754 Floating Point Unit. This FPU can be shared between
the processor and with the hardware units in order to allow floating point processing.

In order to request the FPU for an operation the hardware unit must set fpu_opc, fpu_src1,
fpu_src2 and fpu_req. fpu_opc specifies the operation to perform.

IMPORTANT: In order to set fpu_req, you must ensure that the “wait” signal is low. If wait
signal is high, it means the processor is using it.

The operation is taken into account when wait signal is set to 1.

The result is ready on fpu_dest when wait signal is low.

FPU request Cycle

clock_out
#reset_out

fou_req ; : ; : i e :

fpu_wait
fouope (1 XX X ! i ADD(+) ; X 0K)
fpu_srct (3K X IZ] :X XX >
fpu_src2 (' XXX :X V2 X ' : X :>
fou_dest (¢ ! ! ! XK] ' : V2 X)
request an
addition with V1 : N
Operation has Resultis
avszoa:;e(r;r;cr!a%gr;d been taken ready on
into account fpu_dest bus
by the FPU.

When requesting
an operation
ensure wait is

low

/T\'

m CodESys
(@Secapem Page : 14/22

targets and scoring systems

User Hardware Unit

Tl

clock_out fpu_opc fpu_src2 fpu_wait
#reset_out fou_req 12 bits fpu_srcl 32 bits
32 bits

fpu_dest
32 bits

CodESys hardware IP

4.9 CodESys Interrupt

Hardware units can send interrupt to the processor by setting int_ext to one during
one clock cycle. When CodESys interrupt manager receives the external interrupt
which is the most important priority, the processor stops its current tasks and
executes the CodESys.ITHandler() method. When the method is finished the
processor resumes the current task.

%% CodESys
Seca pem Page : 15/22

targets and scoring systems

5. CODESYS SOFTWARE API

5.1 SLAVE API

5.1.1 SLAVE write method
public static void slaveWrite(int ad, int value)

This method makes a write access on slave bus. It puts ad on the slave address
bus, value on data_out bus, resets slave_rw and sets slave_cs.

5.1.2 SLAVE Read method
public static int slaveRead(int ad)

This method makes a read access on slave bus. It puts ad on the slave address
bus, set slave_rw and slave_cs and returns the value read on the data_in bus.

5.2 MASTER DMA API

SDRAM
UART TXis
e
running greater than 0 because no
because bytes more bytes to
to send are send are
write readBufferAddress with
afilled buffer address
|
“;’ write readCounter
S with the number of byte to UART TXis
@ send running
because bytes
to send are
s s DMA UART UNIT available
MASTER RX
3K \ 1
/ -------------------------------- - >
|
Java Equivalent Code:
Val=CodESys.readSlave(READCOUNTER) ;
frmere if(val>0) return -1; // for example -1 means “still busy
CodeESys.writeSlave(READBUFFERADDRESS, newBuf);
CodeESys.writeSlave(READCOUNTER, nbByteToSend);
UARTUNIT
N SLAVE J |

The MASTER bus only communicates with the SDRAM memory and never with the
processor. The master hardware unit must have :

- aregister which contains a read and/or a write buffer address.
- aregister which contains the number of available bytes in the buffer

This part shows how to design a master unit with a simple example. We will consider
we want to create an UART communication unit.

I’
ﬂ?{\ CodESys
(&Seca em Page : 16/22

targets and scoring systems

When there are some bytes to be sent on TX, the UART will use the DMA bus to
read the memory at readBufferAddress and will send byte by byte a given number of
bytes specified by the readCounter register. Each time a byte is sent, the
readBufferAddress register is incremented and the readCounter register is
decremented. When the readCounter register reaches 0 the UART stops to read.
The reading will be restarted when the readCounter register will be set with a new
value (strictly greater than 0). When the application needs to send new data, it must
ensure the readCounter is equal to 0, set a new buffer (for example readbuffer2) in
readBufferAddress and set the number of bytes to send in readCounter.

When a byte is [Read writeCounter]
received on RX, the

UART uses the DMA | |tobsereceives
bus to write the __
received byte in the éw"‘ewﬂfﬁ‘éﬂ@%ﬂ%ﬁsw"“] ‘scaress, UART wite .
SDRAM at the
writeBufferAddress.
The
writeBufferAddress
and the writeCounter will be
incremented. When the application | JavaEquivalent Code:

needs to read received data, it must | val=CodESys.readSlave(WRITECOUNTER);

read the writeCounter, check if it is | {erf) b o 1 0 peas B bre e
greater than 0 and set a new empty | nbByteReceived=CodeESys.readSlave(WRITECOUNTERFIN
buffer to replace the current one by LA

setting the writeBufferAddress. When writing in writeBufferAddress register, the
UART must also copy writeCounter in writeCounterFinal and reset writeCounter to 0.
Next, the application must read writeCounterFinal to have the correct number of byte
available in the buffer.

No Byte received available in

writeBuffer

writeCounterFinal register with
¢ the number of received
read writeCounterFinal to bytes(because between (1) and|
know how much bytes have been (2) a byte maybe received)
received in the buffer

This mechanism of exchanging buffer is based on mechanism of front and back
buffers. Front buffers are those who are used by the UART which are directly
connected on RX and TX and the application works on back buffers.

The application uses the SLAVE API to read/write in the UART registers.

To simplify and accelerate the “exchange” (or swap) operation two methods have
been created:

void swapReadBufMaster(int adRegBuf, byte newBuUf[], int offsetBuf, int adRegCount,
int availableBytelnBuffer);

I’
ﬂ?{\ CodESys
(&Seca em page : 17122

targets and scoring systems

swapReadBufMaster will execute the following steps:

- Write (address of newBuf+offsetBuf) in the register at address adRegBuf.
- Write availableBytelnBuffer in the register at address adRegCount

This method can be used like this:

Val=CodESys.readSlave(READCOUNTER) ;

if(val>0) return -1; // for example -1 means “still busy”

CodeESys.swapReadBufMaster(READBUFFERADDRESS, newBuf, 0, READCOUNTER, availableByteInNewBuf);
return Val;

int swapWriteBufMaster(int adRegBuf, byte newBuf[], int offsetBuf, int
adRegCountFinal)

swapWriteBufMaster will execute the following steps:

- Write (address of newBuf + offsetBuf) int the register at address adRegBuf
- Read register adRegCountFinal
- Return value of register adRegCountFinal

This method can be used like this:

Val=CodESys.readSlave(WRITECOUNTER) ;

if(val==0) return O; // for example -1 means “no available byte”
Val=CodeESys.swapWriteBufMaster(WRITEBUFFERADDRESS, newBuf, 0, WRITECOUNTERFINAL);
return Val;

/—l_\'

m CodESys

(&Seca em Page : 18/22

targets and scoring systems

6. CODESYS PLATFORM: ARKEON

CodESys is integrated in several SECAPEM
products such as target acquisition systems or
Secapem application specific display systems.

|
N »
All systems are based on the same hardware platform, only the hardware unit and

the application software are different. The hardware platform has been called
ARKEON. It is a daughter board and it includes :

- 1 FPGA : Lattice LFXP2-30E (256 pins BGA package)
- 2 SDRAM of 32MB (total : 64 MB)

- 2 SPI Flash memory of 32 MB (total : 64 MB)

- 1 40MHz oscillator

- 2 80 pins connectors

/—l_\'

m CodESys

(&Seca em Page : 19122

targets and scoring systems

Lattice XP2 -30
LUTs EBR SRAM EBR SRAM Distributed
Blocks (Kbits) RAM (Kbits)
29732 21 387 56
registers 18x18 PLL+DLL Configuration
multipliers memory
22527 56 4+2 Internal Flash

SDRAM 32MB
DATA Sharing Zone [FLASH 32 MB]

() < y, FPGA '
)
<4—f\, CodESys IP
b 32 bits Processor e
=2 SDRAM Controller =
] UART @
o User o
S | | 40MHz g > Hardware S
5 Clock [bootloader Unit =
g IT Manager g
= =
Shared
FPU IEEE 754
2 —

Arkeon |7 L Y37

A4
Daugther [SDRAM 32MB] FLASH 32 MB

board DATA Sharing Zone

Each connector pin is connected to the FPGA pins. The FPGA is configured following
the mother board specification.

-,/M CodESys
@Secapem Page : 20/22
targets and scoring systems '
Mother board
(Here a programming
board)

Arkeon plugged on
Mother board

The CodESys IP (including processor, FPU, SDRAM controller) uses 63% of the
available LUTs in Lattice XP2 -30. The figure below shows the occupation of the
CodESys ip in the Lattice XP2 -30 FPGA.

FPGA LATTICE XP2 -30

CodESys Hardware Units
Reg. 2149 (9%) Reg. 20378
LUTs 18700 (63%) LUTs 11032
PLL 1 (20%) PLL 3
Mul. 32 (57%) Mul. 24
RAM 9 (3483Kb-43%) RAM 12 (4644KDb)

‘—H

If more space is needed, SECAPEM can design boards with some bigger FPGAs
(Lattice, Xilinx, Altera, Microsemi (Microchip)).

/_l_\'

m CodESys
ﬁsecapem Page : 21/22

targets and scoring systems

Diamond is the tool to develop hardware IP for Lattice FPGAs (either in VHDL or
Verilog).

Downloadable at:

http://www.latticesemi.com/en/Products/DesignSoftwareAndIP/FPGAandLDS/Lattice
Diamond

|JAMOND

/—l_\'

-‘7 CodESys
@Secapem Page : 22/22

targets and scoring systems

7. CODESYS: SOFTWARE DEVELOPMENT TOOL

To develop application CodESys uses the Java language. A plugin for Eclipse has
been developed for CodESys.

© workspace - Arkeon_Pocket TestArkeonV2/secapem/io/Battery,java - Eclipse = X
File Edit Source Refactor Navigate Search Project Run Window Help
v @OviniPHrREHitvOvAvAviHGvYIES I vilviHvrovay
Packag.. % Navigat.. # ~ & O Batteryjava &
@ i 96 tmp[offset] = ex3f; // Vi ~
> & gui ~ 97 offset += 4;
v®io 98 tmp[offset] = @x54; // OperationStatus
99
M .
%;Adeunls.class 100 }
@ Adeunis java 101
% Backlight.class 102 public byte[] getMessage()
1 Backlight java 1e3 {
% Battery.class 1e4 byte[] tmpMes = message;
T 185 counter++;
45 NI 106 tmpMes[8] = (byte)(counter >> 8);//counter
% DevicesManager.clat 107 tmpMes[9] = (byte)(counter);//counter
[DevicesManager jav 1e8 byte[] tmpReq = request;
% FlashManager.class 109 int tmpI2cID = i2cID;
5 FlashManagerjava e dnt pets
o 111 int offsetMes = 10;
“ GpsUbx.class 112 int offsetReq = 0;
13 GpsUbxjava 113 int size;
4 PClink.class 114 for(int i = @; i < 15; i++)
[PCLinkjava 115 .
Bopasel \ 116 size = tmpReq[offsetReq + 3];
- ece:ver.fass 117 returnSmbus[i][@] = @;
) Receiverjava 118 for(int j = @; j < 20; j++)
 Satel.class 119
@ Sateljava 120 ret = IZEBU?:HltfigeAndReadSMBUS(tmpIZcID, tmpReq, offsetReq, 3, tmpMes, offsetMes, size, 2);
- 121 returnSmbus[i][0]++;
% 5
:" SystemLed..class 122 returnSmbusfi1Mi+11 = ret: =
3 SystemLed java
% UpdateManager.clas =
e M Problem: Javado declaration 4 Search & Console = Borneo Console 8 ¢ Git Staging oo@-=no

@ UpdateManagerjave S ’ ‘
> & message BorneoPlugin Version=borneo_1.6.0_03
> & messages
> & readers
> & test
b Pocket.class
11 Pocket java
% classpath

Writable | Smart Insert 5]

2]

CodESys download
tools.

