

 Jan 2019 V1.05

Ce document est la propriété de Secapem. Il ne peut être utilisé, reproduit ou divulgué, même
partiellement, sans son autorisation écrite préalable.

This document is the property of Secapem. It may not be disclosed, used or reproduced, in whole or in
part, without the prior written consent of Secapem.

Codesign Embedded System

 CodESys

 Page : 2/22

 TABLE OF CONTENTS

 SOFTWARE/HARDWARE CODESIGN ... 3

 OVERVIEW .. 6

 CODESYS HARDWARE ARCHITECTURE ... 6

4.1 CodESys processor ... 8

4.2 Clock system: ... 8

4.3 Reset system: ... 8

4.4 GLED signal: .. 9

4.5 UART Bus : ... 9

4.6 Slave Bus .. 9

4.6.1 SLAVE Write Access ... 9

4.6.2 SLAVE Read Access ... 10

4.7 Master Bus .. 10

4.7.1 Master Write Cycle .. 11

4.7.2 Master Read Cycle .. 12

4.7.3 MASTER READ/WRITE cycles ... 13

4.8 FPU bus .. 13

4.9 CodESys Interrupt ... 14

 CODESYS SOFTWARE API ...15

5.1 SLAVE API .. 15

5.1.1 SLAVE write method.. 15

5.1.2 SLAVE Read method... 15

5.2 MASTER DMA API .. 15

 CODESYS PLATFORM: ARKEON ...18

 CODESYS: SOFTWARE DEVELOPMENT TOOL ..22

 CodESys

 Page : 3/22

CodESys
Codesign Embedded System

 SOFTWARE/HARDWARE CODESIGN

Software systems based on Turing/Von Neumann machines such as processor or
microcontrollers. They are based on a CPU (Central Processing Unit) which executes
sequentially a simple instruction. Their main benefits are to be easy to program, to
provide a high flexibility of reprograming and to be able to execute any complex
operation. The first disadvantage of these systems is to execute only one task at
time. The second disadvantage is to segment an operation into a set of simple

instructions which slows down the execution of the operation. Also, if the system

Software Benefits :

Sequential programming
(Turing Machine)

Easy debugging

Numerous parameter management

Easy to reconfigure/update

Hardware Benefits :

Hard Real Time

True Parallelism

High bandwidth for data stream
processing

Codesign system conception
heavy problems :

Hardware duplication

Drivers

Tests complexity

Hardware complexity

Hardware-software
communication

 CodESys

 Page : 4/22

uses an operating system, it is difficult to predict how much time the operation will
take (furthermore if the system has several levels of memory cache).

In hardware systems the operation to execute is directly wired in hardware
component such as an ASIC or a FPGA. The operation is executed very quickly
because it is directly implemented with electronic component. Also, if the operator is
wired several times in the component, several operations can be executed at same
time. Because the implementation doesn’t depend on instruction set or operating
system it is much easier to predict the execution time of an operation. But describing
hardware architecture in VHDL or Verilog description language is a little bit more
complicated than using a programming language for software systems. The signal
propagation time, the clock synchronisation, the critical path (etc…) require some
experience. Also, when hardware component is configured to execute an operation it
is harder to reconfigure it than reprogramming a software system. Without entering
into details, the debug process of a hardware system requires also some equipment
(scopes, logic analyser, etc.) and experience.

These two kinds of systems have complementary benefits and disadvantages. That’s
why the idea to design systems which merge soft and hard operators has been born
(developed). This kind of mixed design is called « hardware-software codesign »:
software to keep advantage of programming languages (flexibility, reprogramming,
etc..) and hardware to take benefit from high speed execution and time predictability.

The conception of a codesign system is complex and brings a lot of problems which
often eliminate this kind of solution. The most important problems are : the
communication between the software and the hardware parts, the tests

A simple example could be a digital signal processing algorithm which often needs
the convolution operator. This operator is very time consuming for a processor. In a

codesign system you can create your
convolution operator in hardware and
the rest of the algorithm in software.
First, the both parts could work in
parallel and second the execution of
the convolution will be much faster
than if it was programmed in
software.

Another example: you want to execute a specific task when some analog input
signals sampled at 1MHz reach a specified combination (for example: signal S1=1V
s2=2.3V, s3<4V, etc…). In this case the microcontroller can only execute this task
(get signals and compare with the specified combination) without doing anything
else. In a codesign system, a specific hardware unit can be designed to get signals

 CodESys

 Page : 5/22

and compare with a specified
combination and interrupt the processor
when the combination is reached. In this
case the processor is freed from the
« watching » task and is able to work on
the application.

Some systems made with CodESys:

Secapem embedded scoring
system

Video processing and overlaying
application

Neural processor :

 CodESys

 Page : 6/22

 OVERVIEW

We have created CoDESys in order to simplify the design of hardware/software
codesign embedded systems. To reduce size and complexity of electronic system all
units (hardware and software) are gathered in a single FPGA. CoDESys provides:

- a programming language (Java)
- a programming environment (Eclipse)
- a processor (software system)
- a shared access to the IEEE-754 FPU
- a shared access to the SDRAM (MASTER bus)
- a processor access to the hardware units (SLAVE bus)
- An API to communicate with hardware unit(s).

The SLAVE BUS is used to configure the hardware unit registers. In this case the
hardware unit acts as a slave and only respond to the processor requests.

In order to be totally autonomous and able to work in parallel with the processor,
hardware units have a direct access to memory (DMA: Direct Memory Access). They
can work on big amount of data without interrupting the processor which have its own
memory caches. In this case the hardware unit acts as a master and is able to
request some reads or writes to the SDRAM memory. This bus is called the MASTER
BUS.

 CODESYS HARDWARE ARCHITECTURE

 CodESys

 Page : 7/22

The CodESys IP includes :

- A SDRAM controller: allow the processor and the DMA master unit to
load/store from/into SDRAM memory

- A SPI Flash controller to communicate with the non-volatile Flash memory
- A reset manager (explained further)
- A Schedule Timer used by the Java Virtual Machine to schedule Java Threads
- An UART: used to update software/firmware or download/upload data
- A clock manager (explained further)
- A bootloader: the CodESys can boot on UART or on Flash memory. It boots

on UART when the application or firmware must be updated (update mode). It
boots on Flash to run the application (normal use mode).

- Memory cache: fast internal memory cache to speed up the execution
- watchdog: hardware device which resets de CodESys when application is

stuck somewhere.
- JAP: Java Virtual Machine including software part and hardware acceleration.

It includes an IEEE 754 floating Point Unit.
- Master DMA Bus : bus used to connect a master hardware unit to the SDRAM

(explained further)
- Slave DMA Bus: bus used to connect a master/slave hardware unit
- FPU bus: bus used to access the IEEE 754 floating point unit. In this case the

FPU is shared with the processor.

 CodESys

 Page : 8/22

- Sleep_clock : This clock still works even if the CodESys IP is in sleep mode. It
must be used by hardware unit which are not sleeping in sleep mode (usually
the hardware unit which are able to wake up the system with WAKE signal).

- System_clock : this clock must be used to communicate with SLAVE and
MASTER buses.

- Wake signal : this signal is used to wake up the system.
- Int_ext : this signal is used to send an interrupt to CodESys.

4.1 CodESys processor

The CodEsys processor has two instruction sets: Java and Risc. This processor has been
designed with in collaboration with the CEA-DAM. It is working in military/industrial
applications for twenty years. The Java has been chosen for its sustainability, security and
“all inclusive” implementation. Java includes all mechanisms of an operating system, such as
memory allocation/free, threads, thread synchronisation, object oriented, etc.

4.2 Clock system:

Clock is generated from an external quartz of 40MHz. This external clock must be
connected to clock_in signal of CodESys. This clock is synchronized into PLLs and
provided as clock_out signal. The frequency of clock_out signal is 40MHz. The
clock_out signal must be used with all provided buses (master, slave and FPU).

All signals are synchronized on the rising_edge of clock_out.

A sleep_clock is also provided by CodESys IP. The CodESys IP can be set (by
software) in sleep mode. When the CodESys IP is in sleep mode, the clock_out
signal is no longer generated in order to freeze all hardware units which doesn’t need
to work when sleeping. But some units can be used as wake system and need a
clock signal. These units must use sleep_clock because the sleep_clock still works
even if CodESys is in sleep mode. The frequency of sleep_clock is 40MHz.

4.3 Reset system:

CodESys has two external input reset signal : reset_fla and reset_com.

Reset_fla resets CodESys and sets it in Flash boot mode (normal use). So reset_fla
signal is the “normal” reset.

Reset_com resets CodEsys and sets it in COM(UART) boot mode (update).
Reset_com must be used when an application or firmware update is needed.

Reset_out is generated either when reset_fla or reset_com occurs but it takes also
into account the synchronisation of the PLLs with the external clock (clock_in).
reset_out must be used to reset all hardware units.

All reset signals are active low.

 CodESys

 Page : 9/22

4.4 GLED signal:

This signal is used to see if the system is working correctly. In application mode
(normal use) this signal toggle approximatively every second.

When updating the system, the led toggles when a data is received.

When this signal stays unchanged, it means the system is stuck somewhere.

4.5 UART Bus :

The CodESys uses the UART bus for two main goals. First in update mode, it is used
to update application and firmware.
Second in running mode (application) it
can be used to communicate with an
UART device (PC, module, etc).

It is a standard TTL UART. The default
settings are:

115200 bauds, 1 stop bit, no parity

4.6 Slave Bus

SLAVE bus is used by the processor to read or write data into hardware units.

4.6.1 SLAVE Write Access
When the processor wants to
write a data into a specific
register, it resets the
slave_RW signal, sets the
slave_cs, sets the

External device

 uart_rts_0 uart_cts_0 uart_rx_0

CodESys hardware IP
uart_tx_0

Slave Unit

 slave_CS

slave_rw clock_out
slave_Address

23 bits

slave_DataOut
32 bits

slave_DataIn
32 bits

wake

int_ext SleepCK

CodESys hardware IP

#reset_out

 CodESys

 Page : 10/22

slave_address bus and sets the slave_DataOut bus. The slave_cs signal means the
processor wants select a hardware unit register. The slave_rw low means a write
cycle. The slave_address bus specifies the address of the requested register. The
slave_DataOut bus specifies the value of the data the processor wants to write in the
register. The slave unit must update the specified register at the rising edge of the
clock_out signal.

4.6.2 SLAVE Read Access
When the processor wants
to read a data from a
specific register, it sets the
slave_cs , sets the slave_rw
signal and sets the
slave_address bus. The
slave_cs signal means the
processor wants to select a
hardware unit register. The
slave_rw low means a write
cycle. The slave_address

bus specifies the address of the requested register. Before the next rising edge of
clock_out the selected hardware unit must set the slave_DataIn bus with the value of
the selected register. The data is transferred to the processor on the rising edge of
clock_out signal.

4.7 Master Bus

The master bus is used by hardware units to read and write into memory. This bus is
also called a DMA (Direct Memory Access) bus. This kind of bus makes the hardware
units totally autonomous and they can work on a lot of data without the processor
help. Thus processor and hardware units are able to work in parallel.

Master/DMA Unit

master_req

master_rw
clock_out master_Address

23 bits
master_DataOut

32 bits master_DataIn
32 bits

wake

int_ext SleepCK

CodESys hardware IP

#reset_out done master_bsd
4 bits

 CodESys

 Page : 11/22

The processor and the hardware units share the same SDRAM memory. The
hardware units have a higher priority to the processor. When the processor and the
hardware unit want to access the SDRAM at the same time, the SDRAM controller
freezes the processor and give access to the hardware unit. The processor doesn’t
take a lot of SRAM bandwidth because it has its own memory caches: One for
instruction and one for data (Harvard architecture).

4.7.1 Master Write Cycle
When a hardware unit wants to write a data into SDRAM, it sets master_req signal,
master_rw, master_address bus, master_bsd and master_DataIn. master_req sends
a request to the SDRAM controller. master_rw low means a write cycle.
master_address specifies the SDRAM address to write. master_address is a 32 bits
(4 bytes) address. master_bsd specifies the byte(s) into the 4 bytes word. For
example if master_address=A and bsd(0)=1, bsd(1)=0, bsd(2)=0 and bsd(3)=0, only
the byte at SDRAM address A*4 will be written. If master_address=A and bsd(0)=1,
bsd(1)=0, bsd(2)=1 and bsd(3)=0, only the bytes at SDRAM address A*4 and
(A*4)+2 will be written. If we want to write a 4 bytes word at SDRAM address 8 we
have to set master_address=2 and bsd(0)=1, bsd(1)=1, bsd(2)=1, bsd(3)=1. If we
want to write only one byte at SDRAM address 17 we must set master_address=4
and bsd(0)=0, bsd(1)=1, bsd(2)=0 and bsd(3)=0. The data to write must be in the 32
bits master_DataIn Bus.

Master_address bsd SDRAM byte address

A bsd(0)=1 A*4

 bsd(1)=1 (A*4)+1

 bsd(2)=1 (A*4)+2

 bsd(3)=1 (A*4)+3

 CodESys

 Page : 12/22

The data is written into memory when done is set to one. Done signal can be set to
one from 1 to n cycles.

Several write cycle can be chained. In this case one data write can be done each
clock cycle (burst mode). Warning: the done signal can be lowered during some
cycles (for example during refresh memory cycles).

4.7.2 Master Read Cycle
When a hardware unit wants to read a data from SDRAM, it sets master_req signal,
sets master_rw and master_address bus. No need to set master_bsd because the
master bus always read a word of 32 bits. master_req sends a request to the
SDRAM controller. master_rw high means a read cycle. master_address specifies
the SDRAM address to read. master_address is a 32 bits (4 bytes) address. The
done signal is set by CodESys to inform that request has been taken into account but
the data will be available at least 2 clock cycles after. The data is ready on
master_DataOut bus two clock cycles after the done signal. As write cycle, read
cycle can be executed in burst mode (data is always delayed by two clock cycles).

 CodESys

 Page : 13/22

4.7.3 MASTER READ/WRITE cycles

A read cycle can be followed by a write cycle without lowering the master_req signal.
When a write cycles follows a read cycle it is been delayed at least by two clock
cycles.

4.8 FPU bus

The processor includes an IEEE 754 Floating Point Unit. This FPU can be shared between
the processor and with the hardware units in order to allow floating point processing.

In order to request the FPU for an operation the hardware unit must set fpu_opc, fpu_src1,
fpu_src2 and fpu_req. fpu_opc specifies the operation to perform.

IMPORTANT: In order to set fpu_req, you must ensure that the “wait” signal is low. If wait
signal is high, it means the processor is using it.

The operation is taken into account when wait signal is set to 1.

The result is ready on fpu_dest when wait signal is low.

 CodESys

 Page : 14/22

4.9 CodESys Interrupt

Hardware units can send interrupt to the processor by setting int_ext to one during
one clock cycle. When CodESys interrupt manager receives the external interrupt
which is the most important priority, the processor stops its current tasks and
executes the CodESys.ITHandler() method. When the method is finished the
processor resumes the current task.

User Hardware Unit

 fpu_req

clock_out
fpu_src1
32 bits

fpu_src2
32 bits

fpu_dest
32 bits

fpu_wait

CodESys hardware IP

#reset_out
fpu_opc
12 bits

 CodESys

 Page : 15/22

 CODESYS SOFTWARE API

5.1 SLAVE API

5.1.1 SLAVE write method
public static void slaveWrite(int ad, int value)

This method makes a write access on slave bus. It puts ad on the slave_address
bus, value on data_out bus, resets slave_rw and sets slave_cs.

5.1.2 SLAVE Read method
public static int slaveRead(int ad)

This method makes a read access on slave bus. It puts ad on the slave_address
bus, set slave_rw and slave_cs and returns the value read on the data_in bus.

5.2 MASTER DMA API

The MASTER bus only communicates with the SDRAM memory and never with the
processor. The master hardware unit must have :

- a register which contains a read and/or a write buffer address.
- a register which contains the number of available bytes in the buffer

This part shows how to design a master unit with a simple example. We will consider
we want to create an UART communication unit.

Java Equivalent Code:

Val=CodESys.readSlave(READCOUNTER) ;
if(val>0) return -1; // for example -1 means “still busy”
CodeESys.writeSlave(READBUFFERADDRESS, newBuf);
CodeESys.writeSlave(READCOUNTER, nbByteToSend);

 CodESys

 Page : 16/22

When there are some bytes to be sent on TX, the UART will use the DMA bus to
read the memory at readBufferAddress and will send byte by byte a given number of
bytes specified by the readCounter register. Each time a byte is sent, the
readBufferAddress register is incremented and the readCounter register is
decremented. When the readCounter register reaches 0 the UART stops to read.
The reading will be restarted when the readCounter register will be set with a new
value (strictly greater than 0). When the application needs to send new data, it must
ensure the readCounter is equal to 0, set a new buffer (for example readbuffer2) in
readBufferAddress and set the number of bytes to send in readCounter.

When a byte is
received on RX, the
UART uses the DMA
bus to write the
received byte in the
SDRAM at the
writeBufferAddress.
The
writeBufferAddress
and the writeCounter will be
incremented. When the application
needs to read received data, it must
read the writeCounter, check if it is
greater than 0 and set a new empty
buffer to replace the current one by
setting the writeBufferAddress. When writing in writeBufferAddress register, the
UART must also copy writeCounter in writeCounterFinal and reset writeCounter to 0.
Next, the application must read writeCounterFinal to have the correct number of byte
available in the buffer.

This mechanism of exchanging buffer is based on mechanism of front and back
buffers. Front buffers are those who are used by the UART which are directly
connected on RX and TX and the application works on back buffers.

The application uses the SLAVE API to read/write in the UART registers.

To simplify and accelerate the “exchange” (or swap) operation two methods have
been created:

void swapReadBufMaster(int adRegBuf, byte newBuf[], int offsetBuf, int adRegCount,
int availableByteInBuffer);

Java Equivalent Code:

Val=CodESys.readSlave(WRITECOUNTER) ;
if(val>0) return 0; // 0 means “no byte received”
CodeESys.writeSlave(WRITEBUFFERADDRESS, newBuf);
nbByteReceived=CodeESys.readSlave(WRITECOUNTERFIN
AL);

 CodESys

 Page : 17/22

swapReadBufMaster will execute the following steps:

- Write (address of newBuf+offsetBuf) in the register at address adRegBuf.
- Write availableByteInBuffer in the register at address adRegCount

This method can be used like this:

int swapWriteBufMaster(int adRegBuf, byte newBuf[], int offsetBuf, int
adRegCountFinal)

swapWriteBufMaster will execute the following steps:

- Write (address of newBuf + offsetBuf) int the register at address adRegBuf
- Read register adRegCountFinal
- Return value of register adRegCountFinal

This method can be used like this:

Val=CodESys.readSlave(READCOUNTER) ;
if(val>0) return -1; // for example -1 means “still busy”
CodeESys.swapReadBufMaster(READBUFFERADDRESS, newBuf, 0, READCOUNTER, availableByteInNewBuf);
return Val;

Val=CodESys.readSlave(WRITECOUNTER) ;
if(val==0) return 0; // for example -1 means “no available byte”
Val=CodeESys.swapWriteBufMaster(WRITEBUFFERADDRESS, newBuf, 0, WRITECOUNTERFINAL);
return Val;

 CodESys

 Page : 18/22

 CODESYS PLATFORM: ARKEON

CodESys is integrated in several SECAPEM
products such as target acquisition systems or
Secapem application specific display systems.

All systems are based on the same hardware platform, only the hardware unit and
the application software are different. The hardware platform has been called
ARKEON. It is a daughter board and it includes :

- 1 FPGA : Lattice LFXP2-30E (256 pins BGA package)
- 2 SDRAM of 32MB (total : 64 MB)
- 2 SPI Flash memory of 32 MB (total : 64 MB)
- 1 40MHz oscillator
- 2 80 pins connectors

-

 CodESys

 Page : 19/22

Lattice XP2 -30

LUTs EBR SRAM
Blocks

EBR SRAM
(Kbits)

Distributed
RAM (Kbits)

29732 21 387 56

registers 18x18
multipliers

PLL+DLL Configuration
memory

22527 56 4+2 Internal Flash

Each connector pin is connected to the FPGA pins. The FPGA is configured following
the mother board specification.

 CodESys

 Page : 20/22

The CodESys IP (including processor, FPU, SDRAM controller) uses 63% of the
available LUTs in Lattice XP2 -30. The figure below shows the occupation of the
CodESys ip in the Lattice XP2 -30 FPGA.

If more space is needed, SECAPEM can design boards with some bigger FPGAs
(Lattice, Xilinx, Altera, Microsemi (Microchip)).

FPGA LATTICE XP2 -30

CodESys

Reg. 2149 (9%)
LUTs 18700 (63%)
PLL 1 (20%)
Mul. 32 (57%)
RAM 9 (3483Kb-43%)

Hardware Units

Reg. 20378
LUTs 11032
PLL 3
Mul. 24
RAM 12 (4644Kb)

Mother board
(Here a programming
board)

Arkeon plugged on
Mother board

 CodESys

 Page : 21/22

Diamond is the tool to develop hardware IP for Lattice FPGAs (either in VHDL or
Verilog).

Downloadable at:

http://www.latticesemi.com/en/Products/DesignSoftwareAndIP/FPGAandLDS/Lattice
Diamond

 CodESys

 Page : 22/22

 CODESYS: SOFTWARE DEVELOPMENT TOOL

To develop application CodESys uses the Java language. A plugin for Eclipse has
been developed for CodESys.

 CodESys download
tools.

